data science program
Para convertirnos en Data Scientists el camino más cómodo es iniciar nuestros estudios en la Universidad. Concretamente, en un grado, máster o titulación especializada en Ciencia de Datos que especialice nuestros conocimientos previos de estadística, matemáticas, programación y comprensión de diversos lenguajes como Python, R, C, entre muchos otros más. Al finalizar, seremos capaces de manejar grandes bases de datos, analizarlos y extraer información.
Elegir el mejor programa en Data Science no es fácil, básicamente porque buscaremos formarnos en el mejor centro que se adapte a nuestro nivel económico, pero sobre todo que sea capaz de darnos los mejores conocimientos.
Afortunadamente, en la Universidad de Alcalá ofertamos un máster en Data Science que te ayudará a adquirir las mejores habilidades y que seas capaz de utilizarlas en tu futura empresa. En España, en Europa y en todo el mundo la profesión de los Data Scientist es una de las más valoradas del mercado, con una demanda considerable y sobre todo una oferta de formación especializada en Data Science en todos los países que podamos imaginar.
¿Estás listo para el trabajo de tus sueños? Echa un vistazo a nuestro programa de Data Science y llámanos si tienes cualquier duda.
No te quedes atrás
Rellene este formulario para enviarnos cualquier consulta. En breve nos pondremos en contacto contigo.
Blog data science program : 8 artículos encontrados
¿Por qué es útil hacer un Máster en Data Science en las mejores Universidades?
¿Hasta qué punto influye en nuestro futuro el centro en el que nos formamos? ¿Qué aspectos se ven más comprometidos? ¿Cuánto podemos beneficiarnos o perjudicarnos?
El Máster en Data Science se ofrece como respuesta a la necesidad cada vez mayor de profesionales que sean capaces de extraer conocimiento útil de las fuentes de información que apoye los objetivos del negocio.
Rigor académico
Probablemente ya has adivinado cómo funcionan las cribas en la vida. Lo bueno conlleva un sacrificio, un tiempo: una inversión. Por ello, lo bueno se valora y, como no, se paga. El rigor académico no es más que un seguro que te garantiza que estás en las mejores manos posibles.
Un elenco de profesionales que han pisado por allá por donde nosotros pretendemos pisar algún día. Los mentores adecuados suelen conllevar a los objetivos adecuados y, por eso, es un factor realmente importante a la hora de elegir una u otra universidad.
Todo lo importante requiere una inversión sea de dinero, tiempo, esfuerzo… ¿Por qué no empezar apostando fuerte por nosotros mismos de la mano de los mejores?
Red de Contactos
Vivimos en un mundo conectado en el que, lo más importante, eres tú; nosotros. Todos. Las personas, sí, las mismas. Por eso la red de contactos es crucial a la hora de construir puentes invisibles pero sólidos entre las futuras empresas líderes del sector. Puentes necesarios con el paso del tiempo y que, de forjarlos bajo el cobijo del “rigor académico”, nos aseguramos una enorme funcionalidad de nuestra agenda.
Trabajar con los mejores, conocerles, saber sus inquietudes y sus debilidades. Toda esa información nos será mucho más que útil y, además, ganaremos muchos amigos por el camino.
¿Quién sabe por dónde te llevará el destino y si, quizá, terminas trabajando con alguna de esas personas años después? No desperdicies una buena oportunidad por falta de contactos: ¡búscalos! La competición sana nos lleva a aprender siempre: conoce a tus competidores y date a conocer ante ellos.
Un buen claustro docente
El claustro docente refleja la vinculación entre empresa y universidad, integrado por profesionales procedentes de ambos ámbitos capaces de guiarnos por el mejor camino posible. Un buen equipo docente es clave para ahorrar tiempo y esfuerzo dando palos de ciego. ¿Cómo saber qué docente necesitamos?
Toda criba es un difícil obstáculo que, de ser superado, nos destaca de una masa mayor y nos prepara para la vida. Un claustro selecto significa una oportunidad extra para aprender y alcanzar el éxito. Por eso el rigor académico, la red de contactos y un claustro docente selecto son cualidades propias de las mejores universidades pues precisamente por eso lo son.
No dudes en conseguir más información acerca del Máster en Data Science. Encontrarás un claustro docente capacitado y dispuesto a ayudarte en todo momento, una enorme red de contactos que te proporcionará aliados en tus primeros pasos y unos sólidos cimientos sobre los que forjar tu leyenda y, sin duda, el rigor académico está más que asegurado.
¡Da el paso e invierte en ti mismo!
5 Factores para elegir el mejor Máster en Data Science
Con el auge y la importancia y necesidad de estudiar un Máster para especializarse y obtener conocimientos y habilidades específicas que nos abran el camino al mundo empresarial, la competitividad hace de esta una forma perfecta para despuntar. Por ello es primordial encontrar el mejor Máster y el mejor centro de formación.
¿Qué factores nos pueden guiar a la hora de decidir el mejor Máster en Data Science? En este artículo os dejamos 5 Factores para elegir el mejor Máster en Data Science.
Elije el mejor Centro de Formación en Data Science.
El centro es realmente importante pues de él parten el resto de factores que intervienen en la decisión. Es la clave y el centro del meollo. Por ello es importante que despejes pronto esta duda y, si ya sabes que lo que quieres es realizar el Máster en Data Science en la Universidad de Alcalá, no dudes en echar un vistazo a este enlace donde podrás conocer al profesorado, el programa y ver los requisitos de admisión. ¿A qué estás esperando?
Los Objetivos.
Es muy importante saber hacia dónde vamos. Por eso, siempre que vayas a afrontar una decisión importante en la vida, debes tener muy claro cuál es el objetivo que quieres alcanzar. El tiempo es el valor más preciado que invertirás en toda tu vida y gestionarlo no es tarea fácil.
Enfrentarse a un máster en Data Science significa trabajar para conseguir la comprensión y aplicación de teoría financiera, comprender y saber usar las herramientas de gestión o potenciar el desempeño directivo de los participantes. Mejorar capacidad de toma de decisiones en cualquier ámbito. Una respuesta a las necesidades y exigencias que demanda el mercado, en busca de profesionales con talento como tú.
El Programa (y los Módulos).
Si los objetivos son importantes, el programa y sus módulos serán lo que nos ofrecerá la posibilidad de establecer el tiempo. Conocer el programa de un máster es importante mucho antes siquiera de comenzar el mismo: nos servirá para vaticinar con mayor o menor acierto los tiempos.
Módulos (como Economía y Sistema Financiero Internacional, Métodos Computacionales, Data Science Corporativas, Mercados Financieros, Gestión de Cartera, Regulación Financiera…) son las herramientas que nos llevarán a conseguir los objetivos arriba mencionadas. En ellas tenemos la capacidad de expandir nuestros conocimientos y especializarnos para resultar eficientes en todo tipo de ámbitos.
El Claustro Docente.
Portadores de experiencia y conocimientos, son las llaves que abrirán cada una de las herramientas arriba descritas. Capaces de potenciar la teoría ofreciendo experiencia en el sector y otorgando al recién llegado la seguridad de saber que no está remando solo.
El claustro de la UAH refleja la vinculación entre empresa y universidad, estando integrado por profesionales procedentes de ambos ámbitos. Por un lado profesionales del mundo financiero y bancario que ocupan puestos directivos en las principales empresas del sector, tanto nacionales como internacionales, y por otro lado expertos docentes de las principales universidades del país.
Motivación y Disciplina.
El camino de las Data Science requiere profesionalidad y responsabilidad. La motivación es fundamental para recorrer un camino en el que nuestro mayor activo somos nosotros mismos. Se trata del comienzo de un camino que durará toda la vida y del que podremos emerger y alcanzar el lugar que deseamos en el mundo.
No dejes que los problemas a corto plazo puedan nublar tu visión a largo plazo. Trabaja por conseguir paliar los obstáculos que vayan apareciendo en el camino y tarde o temprano llegarás al lugar indicado. ¡No desfallezcas!
3 Consejos para hacer el mejor Máster en Data Science
En los últimos años se ha ido incrementando la importancia y la necesidad de estudiar un Máster para especializarse y obtener unos conocimientos y habilidades concretas que nos abran el camino al mundo empresarial. La competitividad y el exceso de gente con formación hacen que esta sea una buena forma de destacar y liderar el mercado, por ello es primordial encontrar el mejor Máster y ser aceptado para entrar en él.
Pero… ¿hay algo que podamos hacer para mejorar nuestras posibilidades a la hora de aplicar al Máster deseado? En este artículo os dejamos 3 Consejos para hacer el Mejor Máster en Data Science. ¡Esperamos que os ayuden!
Destaca tus fortalezas.
Eche un vistazo al perfil de los estudiantes de las clases anteriores que han comenzado el programa que se está aplicando y luego toma una evaluación honesta de tus propias características y asegúrate de hacer hincapié en los que se alinean con los estudiantes anteriores.
Si tu experiencia excede el promedio de otros aceptados en el pasado necesitas destacar tu experiencia y describir cómo beneficiará el salón de clases. Obtén algunos buenos consejos sobre cómo ser aceptado para tu programa deseado en Data Science.
Si el programa hace hincapié en la experiencia internacional y has crecido en otro país, estudiaste en otro país o haces un montón de negocios en otro país es importante que resaltes estos atributos ya que eso ayuda a separarte de otros candidatos menos aptos.
Involúcrate e identifica tus puntos flacos.
No es importante solo conocer nuestras fortalezas: nuestros puntos flacos están ahí no solo para ser escondidos. Procura medirte bien a ti mismo y reconocer en qué estás mejor y peor dotado. Cuando consigas identificar aquello en lo que eres peor, trata de encontrar la forma de pulir esa área sin olvidar las otras.
Nunca dejes tus puntos fuertes para compensar los débiles pero, al mismo tiempo, nunca descuides del todo tus puntos flacos solo por mejorar en lo que ya eres bueno. Trata de medir y crecer en todo para ser un candidato más equilibrado.
¡Empezar es la clave!
Parece sencillo pero es lo más complicado de todo. Es una decisión realmente importante pero, no por ello, debemos demorar mucho el proceso a no ser que tengamos buenas razones para hacerlo.
Una vez que inicies el proceso de solicitud, te sentirás en conexión con la universidad y será mucho menos probable que pongas excusas sobre por qué ahora no puede ser el momento adecuado para iniciar un programa de posgrado.
Acepta el hecho de que nunca habrá un momento perfecto para regresar a la escuela y comenzar la aplicación para tu programa e invertir en tu éxito profesional.
Una Maestría en Data Science tiene el potencial para cambiar tu vida. Los empleadores valoran a las personas que poseen avanzadas habilidades financieras que se pueden aprender por asistir a un grado de maestría de Data Science. Tener un dominio de las Data Science te hará mucho más valioso en el lugar de trabajo y te dará las habilidades necesarias para elevar su carrera.
Desde la Universidad de Alcalá te ayudamos en el proceso de toma de decisión del máster que más se adapte a tus intereses y ponemos a tu disposición todo el asesoramiento profesional necesario para responder a cualquier duda que puedas tener. Si ya sabes que lo que quieres es realizar el Máster en Data Science echa un vistazo a este enlace donde podrás ir viendo nuestro programa, conocer al profesorado y ver los requisitos de admisión. ¿A qué estás esperando?
¿Estás preparado para realizar un Máster en Data Science?
La ciencia de datos es un campo interdisciplinario que involucra métodos científicos, procesos y sistemas para extraer conocimiento o un mejor entendimiento de datos en sus diferentes formas.
Perfil de los alumnos
Hablamos de profesionales con un perfil técnico (ingenierías TIC), cuantitativo (matemáticas, estadística) o de negocio (economía, empresa) que deseen afrontar el reto de Big Data como ventaja competitiva, especializándose en el análisis de datos.
El Master of Data Science es un título profesional para las personas que son apasionadas acerca de la extracción de conocimiento significativo de los datos para impulsar la toma de decisiones de negocios o la producción de la investigación. Desarrollará sus habilidades analíticas y técnicas para usar la ciencia de datos para guiar decisiones estratégicas en su área de experiencia. También ofrece la flexibilidad de adaptar el aprendizaje a sus intereses profesionales y personales.
- Habilidades Sociales: Para poder comprender las respuestas sociales a nuestro producto y, por tanto, llegar a anticiparnos a las mismas. Comprender al cliente es básico para satisfacerle.
- Habilidades de Negocio: son las que nos sirven de nexo entre nuestras habilidades sociales y las científicas. Nos llevan a determinar la línea entre lo que el cliente espera del producto y lo que el producto y las necesidades de producción del mismo.
- Habilidades Científicas: aquellas que nos permiten, siguiendo el procedimiento científico, buscar respuestas a las preguntas planteadas.
Los datos son un activo vital para cualquier organización. Contiene conocimientos valiosos sobre áreas como el comportamiento del cliente, la inteligencia de mercado y el rendimiento operativo. Los científicos de datos construyen sistemas inteligentes para administrar, interpretar, comprender y derivar el conocimiento clave de grandes conjuntos de datos.
Si usted tiene una sólida formación matemática o cuantitativa, este grado desarrollará sus habilidades analíticas y técnicas en el uso de la ciencia de datos para guiar las decisiones estratégicas en su área de especialización.
Salidas profesionales de un Máster en Data Science
Estudiar Data Science es una apuesta segura ya que está considerado uno de los perfiles más buscados y las salidas profesionales son de lo más variadas. Como por ejemplo:
- Data Scientist.
- Arquitecto de datos de Business Intelligence.
- Chief Data Officer (CDO).
- Analista Digital.
- Marketing Manager.
- Social Media Strategist.
- Business Analyst.
Si estás interesado en el mundo Data Science no dudes en visitar (ENLACE) para más información sin ningún compromiso. Como suele decirse: la información es poder. Además, la Universidad de Alcalá dispone de dos módulos de adaptación al máster sin ningún coste adicional después de realizar la Reserva de Plaza:
- INTRODUCCIÓN A LA PROGRAMACIÓN: si nunca antes has programado o si ya hace tiempo que no lo haces y deseas refrescar conocimientos.
- INTRODUCCIÓN A LA ESTADÍSTICA: para aquellos que deseen reforzar o recordar sus conocimientos de matemáticas y estadística estudiados anteriormente en la Carrera.
¿Has terminado la carrera y te interesa el mundo Data Science? ¿Has empezado a trabajar y buscas una posición más acorde a tus intereses? No desaproveches una oportunidad única en un sector en constante crecimiento.
¿Por qué Estudiar un Máster en Data Science?
¿Ha notado el reciente aumento de los cursos de Data Science y puestos de trabajo? Echa un vistazo a tu alrededor y descubre por ti mismo cómo todo lo que nos rodea comienza a estar preparado para interactuar con nosotros, para ofrecernos información y para asimilar información de otros dispositivos.
Hoy en día, muchos dispositivos alrededor de nosotros están conectados a Internet. No se limita sólo al teléfono, reloj o tablet, incluso nuestro televisor o consola están actualmente conectados a Internet. ¡Una locura futurista no hace tanto tiempo!
Esto nos da la capacidad de analizar datos de estos dispositivos. Y ese proceso de recolección, análisis e interpretación de datos sería conocido como Data Science.
La Business Intelligence mira esos datos y habla de lo que ya sucedió. Es principalmente una función reactiva o sensible. Los científicos de datos toman esos datos y los usan para crear modelos que pueden usarse para predecir el futuro. Esto requiere habilidades avanzadas, herramientas que pueden manipular cantidades asombrosas de datos y a veces varios equipos que se ejecutan en clústeres o paralelos para proporcionar suficiente potencia de procesamiento.
La Business Intelligence normalmente proviene de simples fuentes internas de datos mientras que la Data Science puede extraer datos de docenas de fuentes, internas y externas.
La visualización del flujo de datos a través de un proceso o sistema ayuda a los administradores a ver los puntos problemáticos para que puedan tomar medidas.
Más allá de simplemente medir lo que su empresa hace, o ha hecho, un científico de datos es un papel estratégico que puede guiar a su empresa mediante la detección de las tendencias antes de que se desarrollen. Un científico de datos encontrará burbujas antes de estallar, y le ayudará a entender los factores sociales, geográficos, tecnológicos, económicos y otros que pueden afectar su negocio.
Y ahí es donde viven muchas empresas. Si los ingresos son importantes para su negocio, debe identificar los productos y actividades que afectan la generación de ingresos.
Del mismo modo, si el conocimiento de la marca es una prioridad, necesitarás una forma de medir eso: si el impacto social es su juego, piense en cómo medirlo. La ciencia de los datos es la forma de predecir los resultados antes de que sucedan.
¿Business Intelligence y Data Science son lo mismo?
Hay un abismo entre la inteligencia empresarial y la ciencia de los datos. La combinación del aprendizaje académico y las habilidades técnicas necesarias para ser un científico de datos tiene un precio, y una contratación de científicos de datos reales costará seis cifras, y tal vez hasta un 50% más que un analista de negocios o un analista de datos.
La ciencia de los datos es para todos. Solía ser algo de las grandes empresas pero dada la accesibilidad que los propietarios o incluso las personas tienen hoy en día, es realmente muy fácil empezar a utilizar el poder de la ciencia de datos para ayudar a tu negocio o crecer.
Personas con máster: los menos afectados por el paro
¿Has escuchado hablar de los Godínez? Este es un nombre (por no decir apodo) que se le da a todos esos empleados con salario mínimo que tienen horarios de 8:00 de la mañana hasta las 18:00 hrs. o más sin derecho a paga por horas extra.
Muchos de ellos terminaron en estos trabajos mal remunerados y sin motivación porque no tienen una especialización que el mundo exige en el presente que impera.
A diferencia de ellos, pasa lo contrario con personas con máster y lo vamos a explicar a continuación.
Los beneficios de tener un máster
Tener un máster no sólo significa tener los conocimientos, la información, las capacidades, las habilidades y las herramientas más desarrolladas para poder salir avante de un mundo lleno de competencias, sino que ser especializado significa que siempre estarás a la cabeza hasta de tus propias ambiciones, ya que a las personas con máster siempre les irá mejor en el terreno laboral y por ende en el terreno personal, ya que:
- Empleo inmediato
- Siempre ganarán más
- Obtendrán siempre los puestos más cotizados
- Liderarán los proyectos más envidiados
- Serán los líderes de grupos
- Serán merecedores de las retribuciones que su especialización implica
- Serán fiel ejemplo de la generación que sigue
- Tendrán más oportunidades de mejora
- Tienen la gran ventaja de liderar un negocio propio
- Tienen la oportunidad de jubilarse jóvenes
- Podrán jubilarse con la mejor paga para seguir teniendo calidad de vida
- Tendrán más tiempo libre
No cabe ningún tipo de duda que ser personas con máster es lo mejor que podemos ser en esta vida, ya que la especialización hace más preparados a los seres humanos y por ende, más capaces de ser la clave del éxito.
¿Qué valor tienen las personas con máster en las empresas?
Sin duda alguna debemos de hablar del trato que, por ejemplo, nuestros egresados del máster en Data Science tienen en las empresas, el cual es mucho más cordial, profesional y personalizado, pues las grandes cabezas que lideran a las empresas, confían en personas con máster que egresan de la Universidad de Alcalá, pues saben el nivel de preparación e intelecto que tienen, y no es cuestión de exclusión pero no debemos de taparnos los ojos en el presente que impera, pues sabemos que siempre será mejor tratado una persona bien preparada.
Si tienen valor para la empresa pero están más expuestos a despidos, pues en los recortes son a los primeros que despiden.
Las personas con máster son mucho más beneficiadas en el mundo laboral debido a la aportación tan excepcional que hacen con respecto de los procesos laborales que se implementan en cada empresa y que llevan al éxito a las mismas, ya que estas personas son portadoras de talento para mover los hilos de cada uno de sus departamentos (en caso de tener subordinados) para que todos los procedimientos y tareas de cada uno sean clave de la fortuna que es tener a un egresado nuestro en la empresa.
El boom del Data Science
Hoy al hablar de los Data Science o científicos de datos estamos hablando de uno de los perfiles más buscados y también mejor pagados a nivel mundial.
Pero, a ¿Qué se debe el boom de este perfil?
Situación actual del mercado
Para comenzar a comprender el boom del Data Science debemos hablar del estado actual del mercado y de la tendencia que presenta en él este perfil.
Así, ha de tenerse en cuenta que desde hace algunos años atrás tanto los Big Data como el Business Intelligence se han presentado como destinos principales de inversión. Así mismo, se presentan como los sectores que más requieren personal cualificado y son en los que más se ha generado nuevos emprendimientos y empresas.
Según una importante consultora, la Gartner, se preveía que en este 2016 la inversión en este ámbito sería de cerca de 17 mil millones de dólares. Una suma realmente alentadora que nos deja en evidencia porque en estos últimos años los puestos para expertos en analizar e interpretar datos para las empresas han aumentado hasta el punto de duplicarse.
Los profesionales en tratar los datos, incluidos claramente los Big Data, se conocen hoy como los Data Scientists y son ellos los que se han posicionado en el mercado como uno de los mejores pagos del sector TIC. La necesidad de suplir este perfil y su poca cantidad de profesionales ha logrado esto con este perfil.
Así, el salario de un data scientist en Estados Unidos es de unos 100 mil dólares al año, mientras que en el Europa se ubica en más o menos unos 70 mil dólares anuales. En cuanto a España este sueldo se ubica en unos 55 mil euros al año en promedio.
Y entonces, en este punto, nos va quedando claro que la popularidad del Data Science se debe sobre todo a que las empresas son cada vez más conscientes de la importancia de los datos y de los beneficios que su estudio y análisis puede dar a la misma.
En este entorno el perfil de Data Scientist se presenta como uno de los más apreciados y es que no es por nada que hoy se ubica como primero en la lista de Glassdor que presenta las 25 mejores profesiones de América.
Y si no te quieres perder este boom lo mejor es que hagas una consultoría en Inteligencia Artificial para saber la situación de tu empresa.
Salidas profesionales del Data Science
Ya para terminar, debemos tener muy claro que el científico de datos también ha logrado posicionarse como uno de los perfiles más buscados debido a que sus salidas profesionales son muy variadas. Dentro de ellas se encuentran:
- Los puestos de analista de datos
- Consultores y gestores de proyectos de Bussiness Intelligence
- Como arquitectos de datos de Bussiness Intelligence,
- Como analistas digitales en los departamentos de Marketing
- Como responsable de datos empresariales de la empresa y de la estrategia de la información.
Formarse en Data Science
Para acceder a las salidas laborales que hemos mencionado en el apartado anterior, es necesario formarse especialmente en todos los aspectos que conlleva el Data Science. Una de las posibilidades de más éxito es el máster en Data Science. Con el máster podrás adquirir los conocimientos necesarios que te convertirán en un data scientist.
En el máster en Data Science aprenderás a realizar una gestión de forma adecuada, pre-procesando los datos y optimizando así su gestión según las herramientas utilizadas, pues trabajar con estas altas cantidades de datos demanda unos requisitos físicos que debemos explotar al máximo. Otra de las aptitudes que adquirirás es la habilidad para comprender cuáles son las fortalezas y debilidades del negocio en el que se desarrolla su acción laboral y hacia dónde se dirige este. Aprender a conocer el negocio y la industria en los que te desenvuelves es crucial en esta profesión.
El máster en data science te abrirá las puertas del mundo laboral tanto en España como en el resto del mundo, ya que es una profesión a la que muy pocas personas se dedican. Debido a esto, la demanda de las empresas por incorporar a un data scientists en sus filas es muy grande. Actualmente, cursar el máster en data science te garantiza obtener un empleo rápidamente en España.
Principalmente, el máster se orienta a profesionales del mundo de la ingeniería y las finanzas, aunque, por supuesto, aquellos profesionales que no pertenezcan a estas ramas también pueden acceder a él y formarse para ser data scientist en su campo.
Así, la demanda empresarial de Data Scientist se revela muy alta y ante ello son cada vez más los profesionales que deciden forjarse en este perfil para poder entrar en los diferentes sectores que los requieren.
La tendencia para los Data Scientist se presenta muy esperanzadora y es que según el informe del ‘Big & Open Data in Europe: A growth engine or a missed opportunity?’ la transición a soluciones tecnológicas basadas en datos podría superar los 200 millones de euros en Europa para el 2020.
Las 10 claves de un Máster en Data Science
Si has decidido realizar este master has de considerar conocer las claves de un Máster en Data Science que éste ha de cumplir.
¿Cómo debería ser tu Máster en Data Science?
Nos queda claro que el Máster en Data Science es uno de los estudios más apetecidos por las empresas y por esto hace que valga mucho la pena tomarse su tiempo a la hora de elegir el estudio a realizar.
Al momento de seleccionar entre uno y otro has de considerar las claves de un Máster en Data Science:
- El máster ha de incluir elementos estadísticos y técnicos, pero también ha de combinar la estrategia, la analítica y la buena comunicación. Esto es fundamental ya que las empresas requieren perfiles que combinen adecuadamente todos estos elementos.
- Que maneje como objetivo el aprendizaje del ciclo completo de Data Science. Por eso, el máster debe buscar que se aprenda desde el punto básico, de datos en bruto, pasando por la elaboración de los dashboards y que claramente lleve a la aplicación de los diferentes métodos estadísticos.
- Ha de permitirnos llegar a convertir los datos en productos o servicios valiosos. La finalidad de este máster ha de ser llevar a sus participantes a saber usar los datos que se analizan con las herramientas estadísticas.
- Enseñar a escribir un código para los datos. En las claves de un Máster en Data Science no puede faltar esta enseñanza y es que la persona deberá ser capaz analizar los datos con Hadoop y Spark.
- También, debería enfocarse a la aplicación sobre los datos de técnicas propias del machine learning, con la aplicación de Spark.
- La comunicación. Nos queda claro que la comunicación es un punto muy importante en el Data Scientist. Por eso, el máster también debe tener su enfoque en ello. De esta forma, a lo largo del máster se debería trabajar en el desarrollo de presentaciones, como dashboards interactivos, que sean de gran ayuda para presentar la información que se ha logrado extraer.
- Un temario muy completo que realmente permite ser un experto en Data Science es fundamental. Para identificarlo se ha de buscar que integre diferentes módulos claves, como el introductorio, el de diferentes lenguajes para data Hacking, el de machine learning y evidentemente el de estadística así como los de deeplearning, bif data, visualización y la aplicación real del data science.
- Presentación de módulos previos. En las claves de un Máster en Data Science la presentación de módulos previos es muy importante ya que muchas personas que no tienen el perfil adecuado para cursar este estudio puede lograr ponerse en un punto de equilibrio con estos contenidos que deberían tratar la programación con Python así como las estadísticas para data science con Python.
- Itinerarios y precios ajustados al perfil: los programas de máster elegidos deberían presentar opciones ajustadas a los perfiles de los participantes. De esta forma, si se requiere cursar los módulos previos o alguno de ellos se debería poder hacer antes de iniciar el programa de máster en Data Science.
- Finalmente, no pueden faltar los excelentes profesores. Estos deberían siempre ser profesionales en Data Scientist que trabajen actualmente en ello, aunque claramente han de presentar una especialidad y experiencia en el área que resulte de gran utilidad.
Principales beneficios del Data Science
El principal beneficio del Data Science en una organización es la facilitación de la toma de decisiones. Las organizaciones con Data Scientists pueden incluir evidencia cuantificable basada en datos en sus decisiones comerciales. Estas decisiones basadas en datos pueden, en última instancia, llevar a una mayor rentabilidad y una mejor eficiencia operativa, rendimiento comercial y flujos de trabajo.
En las organizaciones orientadas al cliente, el Data Science ayuda a identificar y refinar las audiencias objetivo. El Data Science también puede ayudar al reclutamiento: el procesamiento interno de aplicaciones y las pruebas de aptitud basadas en datos y los juegos pueden ayudar al equipo de recursos humanos de una organización a realizar selecciones más rápidas y precisas durante el proceso de contratación.
Los beneficios específicos del Data Science varían según el objetivo de la empresa y la industria. Los departamentos de ventas y marketing, por ejemplo, pueden extraer datos de clientes para mejorar las tasas de conversión o crear campañas de marketing uno a uno. Las instituciones bancarias están extrayendo datos para mejorar la detección de fraudes. Las empresas de envío utilizan el Data Science para encontrar las mejores rutas de envío y horarios, así como los mejores modos de transporte para sus envíos.
El Data Science todavía es un campo emergente dentro de la empresa porque la identificación y el análisis de grandes cantidades de datos no estructurados pueden resultar demasiado complejos, costosos y lentos para las empresas.