top data science programs
La Universidad de Alcalá no solo es una de las mejores universidades de la capital, también lo es de España. Su prestigio se debe tanto a su historia como a la oferta académica centrada en el futuro y en la especialización estudiantil. Afortunadamente, en la Universidad de Alcalá ofertamos un máster situado entre los Top Data Science programs de España. Nuestro objetivo es convertir a los recién graduados en estadística, matemáticas o informática en profesionales de ciencia de datos.
El Data Science es una de los campos del saber con más ofertas laborales actualmente. Se debe, principalmente, a que existe una demanda muy grande por las empresas, que cada día necesitan más a un experto en el manejo de grandes cantidades de datos con el fin de extraer conocimiento.
Pero no solo el Data Science tiene un gran camino por delante. También lo es el Text-Mining, Business Intelligence o el Data Analytics. Todas las profesiones tienen un calado cada vez mayor.
En definitiva, aprovecha el momento y decídete a formarte y convertirte en Data Scientist. No te faltarán opciones laborales y serás uno de los profesionales más buscados del mercado. ¡Anímate! Te estamos esperando.
No te quedes atrás
Rellene este formulario para enviarnos cualquier consulta. En breve nos pondremos en contacto contigo.
Blog top data science programs : 37 artículos encontrados
Las 10 claves de un Máster en Data Science
Si has decidido realizar este master has de considerar conocer las claves de un Máster en Data Science que éste ha de cumplir.
¿Cómo debería ser tu Máster en Data Science?
Nos queda claro que el Máster en Data Science es uno de los estudios más apetecidos por las empresas y por esto hace que valga mucho la pena tomarse su tiempo a la hora de elegir el estudio a realizar.
Al momento de seleccionar entre uno y otro has de considerar las claves de un Máster en Data Science:
- El máster ha de incluir elementos estadísticos y técnicos, pero también ha de combinar la estrategia, la analítica y la buena comunicación. Esto es fundamental ya que las empresas requieren perfiles que combinen adecuadamente todos estos elementos.
- Que maneje como objetivo el aprendizaje del ciclo completo de Data Science. Por eso, el máster debe buscar que se aprenda desde el punto básico, de datos en bruto, pasando por la elaboración de los dashboards y que claramente lleve a la aplicación de los diferentes métodos estadísticos.
- Ha de permitirnos llegar a convertir los datos en productos o servicios valiosos. La finalidad de este máster ha de ser llevar a sus participantes a saber usar los datos que se analizan con las herramientas estadísticas.
- Enseñar a escribir un código para los datos. En las claves de un Máster en Data Science no puede faltar esta enseñanza y es que la persona deberá ser capaz analizar los datos con Hadoop y Spark.
- También, debería enfocarse a la aplicación sobre los datos de técnicas propias del machine learning, con la aplicación de Spark.
- La comunicación. Nos queda claro que la comunicación es un punto muy importante en el Data Scientist. Por eso, el máster también debe tener su enfoque en ello. De esta forma, a lo largo del máster se debería trabajar en el desarrollo de presentaciones, como dashboards interactivos, que sean de gran ayuda para presentar la información que se ha logrado extraer.
- Un temario muy completo que realmente permite ser un experto en Data Science es fundamental. Para identificarlo se ha de buscar que integre diferentes módulos claves, como el introductorio, el de diferentes lenguajes para data Hacking, el de machine learning y evidentemente el de estadística así como los de deeplearning, bif data, visualización y la aplicación real del data science.
- Presentación de módulos previos. En las claves de un Máster en Data Science la presentación de módulos previos es muy importante ya que muchas personas que no tienen el perfil adecuado para cursar este estudio puede lograr ponerse en un punto de equilibrio con estos contenidos que deberían tratar la programación con Python así como las estadísticas para data science con Python.
- Itinerarios y precios ajustados al perfil: los programas de máster elegidos deberían presentar opciones ajustadas a los perfiles de los participantes. De esta forma, si se requiere cursar los módulos previos o alguno de ellos se debería poder hacer antes de iniciar el programa de máster en Data Science.
- Finalmente, no pueden faltar los excelentes profesores. Estos deberían siempre ser profesionales en Data Scientist que trabajen actualmente en ello, aunque claramente han de presentar una especialidad y experiencia en el área que resulte de gran utilidad.
Principales beneficios del Data Science
El principal beneficio del Data Science en una organización es la facilitación de la toma de decisiones. Las organizaciones con Data Scientists pueden incluir evidencia cuantificable basada en datos en sus decisiones comerciales. Estas decisiones basadas en datos pueden, en última instancia, llevar a una mayor rentabilidad y una mejor eficiencia operativa, rendimiento comercial y flujos de trabajo.
En las organizaciones orientadas al cliente, el Data Science ayuda a identificar y refinar las audiencias objetivo. El Data Science también puede ayudar al reclutamiento: el procesamiento interno de aplicaciones y las pruebas de aptitud basadas en datos y los juegos pueden ayudar al equipo de recursos humanos de una organización a realizar selecciones más rápidas y precisas durante el proceso de contratación.
Los beneficios específicos del Data Science varían según el objetivo de la empresa y la industria. Los departamentos de ventas y marketing, por ejemplo, pueden extraer datos de clientes para mejorar las tasas de conversión o crear campañas de marketing uno a uno. Las instituciones bancarias están extrayendo datos para mejorar la detección de fraudes. Las empresas de envío utilizan el Data Science para encontrar las mejores rutas de envío y horarios, así como los mejores modos de transporte para sus envíos.
El Data Science todavía es un campo emergente dentro de la empresa porque la identificación y el análisis de grandes cantidades de datos no estructurados pueden resultar demasiado complejos, costosos y lentos para las empresas.